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~Received 16 July 1996!

The Feder and Feder earthquake model shows an integrated size distribution of events that decays as a power
law when averaged over realizations with different initial conditions. The question remains as to what is the
distribution for a single realization. Small amounts of quenched disorder can break the symmetries of the Feder
and Feder model, introduce stochasticity in the dynamics, and allow for self-averaging. The introduction of
weak frozen spatial disorder reveals a dynamical behavior very different from what is seen by ensemble
averaging. The resulting integrated size distribution seems to be a function of the logarithm of the size,
P(n);(log10n)
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We have seen in the last year or so a renewed intere
coupled integrate-and-fire~IAF! models of the type propose
by Feder and Feder~FF! @1# and Olami, Feder, and Chris
tensen~OFC! @2#. This interest has sprung from a conside
able effort to understand the origin of synchronization and
characterize the existence or not of self-organized critica
in dissipative models@3–8#. Although much progress ha
been made, many unresolved points remain regarding t
two questions.

In this Brief Report, I study a modified version of th
Feder and Feder model@1# introduced recently by Herz an
Hopfield ~HH! @6#. Although not a good representation fo
earthquakes@9–11#, the FF coupled IAF oscillator has bee
considered as a possible candidate as a model of firing
rons where global synchronization and periodicity a
thought to play an important role@6# and remains therefore
useful model to study. For periodic boundary conditions, H
showed that the model is periodic but with either purely lo
~involving a single site! or system-wide~all sites! events,
depending on the parameters. In the more interesting cas
open boundaries, however, the temporal behavior can
quite different. With this configuration, the FF model
known to rapidly converge to a cyclic behavior with period
cally recurring avalanches happening all over the lattice~see
Fig. 1!. The specific avalanche size distribution depends o
on the initial conditions. When an ensemble average is ta
over different initial conditions, FF and HH found that th
integrated size distribution for the avalanches follows
power law. The question as to what is the nature of t
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distribution for a single representation remains to be und
stood. One way to do this is to introduce very we
quenched spatial disorder and see whether this behavio
stable or not. Doing so, I have found that the integra
distribution for a single realization is not self-organized cri
cal ~SOC! but follows a law that decays much more slow
with increasing size of avalanches.

The FF rule was first proposed as a model describing

FIG. 1. Time evolution of the event size for the FF coupled-m
model on aL5225 lattice witha50.20 andd50. Only events of
size larger than 1000 are shown. The time is scaled by the pe
T defined in the text and the amplitude by the total number of s
N. The left-hand part of the graph underlines the discrete natur
these avalanches, which happen oneafter the other; the right-hand
part shows the long-time stability of this sequence of avalanch
3682 © 1997 The American Physical Society
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55 3683BRIEF REPORTS
stick-slip motion of blocks covered with sandpaper and s
ing on carpet@1#, itself a simplistic representation of single
fault motion. At each site of a square lattice, a stress func
is definedFi(t), which evolves linearly in time, under a slid
ing force,

dFi~ t !

dt
51. ~1!

When the stress at a sitei reaches a thresholdtc , taken to be
1 for simplicity, it is set to 0,

Fi~ t !→Fi8~ t !50, ~2!

and a fraction of the stress,D i,1/4, is redistributed to the
nearest neighbor ofi @6#,

F j~ t !→F j8~ t !5F j~ t !1D i . ~3!

The last two steps are repeated until the stress at every s
below the thresholdtc . One can view this process as d
scribing the blocks slipping and releasing their stress on t
neighbors. Once allFi ’s are within the allowed band of val
ues, time is restarted. The size of an event, called avalan
by analogy with the sandpile models, is given by the num
of sites triggered at a single time.

In previous works regarding this model, the redistributi
factor D i was taken to be site independent. Here, a sm
amount of quenched disorder is introduced as a zero-m
perturbation on a constanta:

D i5a1b i , ~4!

with b i , a random variable taken in the interval@2d,d#.
Smalld ’s (<0.020) were generally used although larger v
ues are also briefly discussed. A similar disorder was imp
mented on the OFC rule where it was found to affect sign
cantly the dynamical behavior@8#.

FIG. 2. Logarithm of the integrated probability of finding a
avalanche of at least sizen as a function of the logarithmn. Results
obtained by an ensemble average of 100 different initial conditi
for the same set of parameter as in Fig. 1. Inset: Same plot for
time evolution of Fig. 1~single realization!.
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At t50, the stressFi is drawn from a linear distribution
in the interval@0,1) such that two sites never have the sa
stress simultaneously. This ensures that an event is alw
triggered from a single site. The mode of propagation of
avalanche from this initial site is not uniquely determined
the rule itself and must be chosen from physical~or numeri-
cal! considerations. The most commonly used algorithm i
radial move from the center. This approach was retained
Olami et al. @2#, Grassberger@12#, Herz and Hopfield@6#,
and others. The slowness of the algorithms used in the
studies of these models was such that only very small latt
with sides betweenL530 and 50 could be simulated, mak
ing it difficult to identify size effects. With the introduction
of better algorithms, however, Grassberger@12# could study
square lattices with sides of length up toL51000, and con-
firm and extend the results presented in@2#. This technique,
which I have used here, improves the traditional appro
for the problem by~1! keeping the stressFi time indepen-
dent, letting instead the threshold change w
dt(t)/dt521, and ~2! subdividing the lattice into many
blocks, therefore increasing the speed of state reordering
ter an avalanche. The reader is referred to@12# for more
details.

Figure 1 presents the temporal evolution of a typical
alization for this model on a lattice of size 2252 with
a50.20, open boundaries, and no quenched disorder. O
events involving more than 1000 sites are plotted there
the left panel, we plot a short time sequence of recurr
avalanches. In the right panel, we show the long time beh
ior of this periodic sequence. Most of these events co
back in exactly the same way time after time, produci
plateaus in the time evolution. Some, however, fluctua
slightly but still remain very stable over long time sequenc
The unit of time chosen is the natural return period
earthquake-type models with periodic boundary conditio
T5124a, as was shown by Middleton and Tang@13# for
the OFC coupled map and by HH@6# for a larger class of
models, including FF. With open boundaries, the period
events settles atP5123a; i.e., it is controlled by the
boundary sites. As we shall see, this periodicity does
survive the introduction of quenched disorder. From Fig. 1

s
he

FIG. 3. Same as in the previous figure except that the sca
now log-double-log.
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can also be noted that in the absence of quenched diso
only very small noise remains present in the time ser
Although the system stays periodic for long stretches
time, some instabilities can build up and change the confi
ration of events@6# but their time scale is too long to b
studied numerically.

Because of the quasifrozen temporal behavior of this n
disordered IAF model, self-averaging does not take place
order to characterize the distribution, HH and FF took
ensemble average over the results of many realizations
initial conditions. Such an average produces an integra
size distribution of events that follows a power law~see Fig.
2!. ~This power-law behavior should not be seen as s
organized critical since it comes from the average of diff
ent systems, not self-averaging.! This average distribution
however, does not tell us much about the fundamental
namics of asingle realization.

If we look at such a quantity~inset of Fig. 2!, it appears
clear that this distribution doesnot follow a power law and
that the weight is shifted towards larger avalanches. It tu
out that this distribution is well approximated by a straig
line in a log–double-log plot~Fig. 3!. It is clear from this
figure that the ensemble averaged distribution does not
vide a proper understanding as to the real nature of the e
distribution for a single realization.

To understand the statistics of event-size distribution fo
given realization, it is useful to introduce some quench
disorder that should break the symmetries of the FF inte
tions, destabilize the plateaus, and produce a stochas
similar to what is found in the OFC model@14#. The justifi-
cation for the addition of disorder is twofold: First, by intro
ducing disorder in the problem, it should no longer be n
essary to perform an ensemble average, allowing us to s
the statistics of a single fault at a time. Second, it is a tes
the stability of the results obtained for the FF rule und

FIG. 4. Logarithm of the integrated size-probability distributio
function as a function of the logarithm of the size forL5225 lat-
tices with a50.10 and d50.001 ~solid line!, d50.005 ~short
dashes!, d50.20 ~long dashes!, anda50.20 with d50.002 ~dots!
as well as for aL5484 lattice witha50.20 with d50.002 ~dot
dashes!. Inset: time evolution of the event for aL5225 lattice with
D i50.2060.0005.N is the total number of sites on the lattice an
T is the period defined in the text.
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small spatial perturbations; in order to be considered a
reasonable substitution for a macroscopic system like n
rons or earthquakes, it is necessary that the model be s
under local variations.

As was shown in previous works@5,8,9,11,15#, the behav-
ior of these models can be strongly affected by even v
small amounts of disorder. With the introduction of slig
frozen disorder in the rule, all temporal behavior indeed
comes stochastic and self-averaging. The plateaus tha
seen in the standard FF model become unstable and do
survive. However, and contrary to what could have been
pected, with very small disorder theintegratedprobability
distribution takes a well-defined shape that is in agreem
with the one displayed by a single realization without a
frozen disorder. It can be fitted by an unusual law favori
very large avalanches:

P~n!;
1

~ log10n!n . ~5!

As for the OFC case@8#, disorder seems to help larger even
to take place. There is no full synchronization here, but
decay in the distribution is slower than a typical power la
Moreover, the nature of the distribution is not changed by
small disorder but rather made more prominent. As one
creases the amplitude of the frozen disorder, Eq.~5! is no
longer followed by the system.

The inset in Fig. 4 shows the time evolution for
L5225 lattice witha50.100 andd50.005, i.e., with a very
low degree of disorder. The generic time behavior is qu
tatively different from what is seen in Fig. 1:~1! there are no
stable plateaus anymore and the system appears stoch
~2! Large avalanches, almost system wide in size, beco
now very common. This type of time evolution happens
all the length scales studied here, i.e., betweenL5100 and
484 and for a disorder amplitude smaller than ab
d50.01. The smaller thed, however, the longer it takes fo
the correlation between successive events to decay.
therefore necessary to perform longer and longer runs in
der to obtain meaningful statistics. This is in agreement w
the fact that for zero disorder, the correlation time becom

FIG. 5. Same as Fig. 4 except that the scale is now log-doub
log.



es
w
ne
te
iv
it.
ee
is
in
th
F
is

tu
th
un
s
in
e
tr
or
io
on
og
a

e
a
e
o

ro
-

o
io

th

s

r
ot
en in

ze
de

ears
ed.
me
de-
am-
be-
ts a
nt

o-
can
in
a
dif-
of
or-
he
all
and
hm
ses

z
me
ss-
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extremely long, although it is not clear whether it diverg
Since there appears to be no transition between systems
small disorder and the perfect FF model, the insight gai
with the formers should extend straightforwardly to the lat
even though its symmetry makes this underlying collect
nature more difficult to observe in the nondisordered lim

As mentioned in the previous paragraph, there is no n
for an ensemble average in the presence of quenched d
der. This disorder prevents the configuration from gett
stuck in a single and periodic series of event, destroying
dependence on initial configuration that is seen in the
model. The integrated probability distribution in Fig. 4
shown forL5225 lattices, with differenta ’s and d ’s. We
see smooth curves with no plateaus or jumps. The sharp
at largen is a size effect and happens at about 95% of
total size of the system. By contrast, the largest events fo
in thed50 systems remain usually small, often encompa
ing 30% or less of all sites, with the precise value depend
on the particular initial configuration. It is clear, from th
log-log representation, that the integrated probability dis
bution cannotbe described as a simple power-law behavi
signature of SOC. The positive curvature of the distribut
means that larger events are more favored over smaller
than SOC would predict. As can be seen in Fig. 5, a l
double–log plot, the distribution is much better fitted by
function like Eq.~5!, i.e., a power law of the logarithm of th
event size log10n. In this representation, the distribution is
straight line over a full unit, and is not an artifact of th
limited size of the system. Given the computational costs
simulation, extending significantly the regime would be p
hibitive. Interestingly, the exponentn appears to be rela
tively unaffected by the specific value ofa andd, as distri-
butions obtained from various parameters all fall on top
each other. This effect could already be seen in the prev
figure. The value of this exponent isn'2.6. Its universality
is not well understood at the moment especially given
et
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fact that in a similar model@12#, the SOC exponent depend
sensitively on the exact value ofa. Although I have shown
results here forL5225 and 484, similar results are found fo
lattices ofL5100. In this case, however, the system is n
large enough to produce the system-wide avalanches se
the inset of Fig. 4.

The power-law behavior in the logarithm of event si
persists until some relatively large threshold in the amplitu
of the quenched disorder. For aL5484 lattice with
a50.20, for example, the threshold is at aboutd50.0025.
Beyond this value, the bias towards large events disapp
and the distribution of avalanches is no longer well defin
There remains some tendency to organization, with so
large avalanches but one does not find a simple law to
scribe this behavior. As a general rule, however, as the
plitude of the disorder increases, system-size avalanches
come less frequent: the large degree of disorder preven
system-wide synchronization by inhibiting an efficie
propagation of the avalanche through the network.

In conclusion, I have shown that the introduction of fr
zen disorder in the modified Feder and Feder IAF model
lead to better understanding of what is really happening
the zero-disorder limit. In this limit, the lattice sticks into
quasistatic regime, which, with an ensemble average on
ferent initial conditions, displays a power-law distribution
avalanches. Introducing a small amount of frozen site dis
der, I show that this distribution is misleading and that t
fundamental integrated distribution of events in the sm
disorder limit is more biased towards large avalanches
could be described by an unusual power law of the logarit
of the size. This result breaks down when disorder increa
further.
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