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The Feder and Feder earthquake model shows an integrated size distribution of events that decays as a power
law when averaged over realizations with different initial conditions. The question remains as to what is the
distribution for a single realization. Small amounts of quenched disorder can break the symmetries of the Feder
and Feder model, introduce stochasticity in the dynamics, and allow for self-averaging. The introduction of
weak frozen spatial disorder reveals a dynamical behavior very different from what is seen by ensemble
averaging. The resulting integrated size distribution seems to be a function of the logarithm of the size,
P(n)~ (logygn) 7. [S1063-651X97)07103-1

PACS numbgs): 05.40:+j, 64.60.Cn, 87.10e, 91.30-f

We have seen in the last year or so a renewed interest idistribution for a single representation remains to be under-
coupled integrate-and-fil@AF) models of the type proposed stood. One way to do this is to introduce very weak
by Feder and FedeiFF) [1] and Olami, Feder, and Chris- quenched spatial .disorder and see whether this pehavior is
tensen(OFC) [2]. This interest has sprung from a consider-Stable or not. Doing so, | have found that the integrated
able effort to understand the origin of synchronization and tflistribution for a single realization is not self-organized criti-
characterize the existence or not of self-organized criticalinf (SO0 but follows a law that decays much more slowly
ST with increasing size of avalanches.
in dissipative model$3—8]. Although much progress has The FF rule was first proposed as a model describing the
been made, many unresolved points remain regarding these
two questions.

In this Brief Report, | study a modified version of the UL LD L L TTT T T T[T T[T
Feder and Feder modEl] introduced recently by Herz and
Hopfield (HH) [6]. Although not a good representation for 0.3
earthquake$9—11], the FF coupled IAF oscillator has been
considered as a possible candidate as a model of firing neu-
rons where global synchronization and periodicity are
thought to play an important ro[&] and remains therefore a z 0.2
useful model to study. For periodic boundary conditions, HH
showed that the model is periodic but with either purely local
(involving a single sitg or system-wide(all siteg events,
depending on the parameters. In the more interesting case of
open boundaries, however, the temporal behavior can be
quite different. With this configuration, the FF model is LI
known to rapidly converge to a cyclic behavior with periodi- i P s W W W S o
cally recurring avalanches happening all over the laftiee 0123450 2 4 6 810
Fig. 1). The specific avalanche size distribution depends only (units of T) (units of 103 T)
on the initial conditions. When an ensemble average is taken
over different initial conditions, FF and HH found that the £ 1. Time evolution of the event size for the FF coupled-map
integrated size distribution for the avalanches follows amgge| on aL =225 lattice witha'=0.20 ands=0. Only events of

power law. The question as to what is the nature of thissjze jarger than 1000 are shown. The time is scaled by the period
T defined in the text and the amplitude by the total number of sites
N. The left-hand part of the graph underlines the discrete nature of
*Electronic address: mousseau@physcn.umontreal.ca these avalanches, which happen after the other; the right-hand
TPresent address. part shows the long-time stability of this sequence of avalanches.
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FIG. 2. Logarithm of the integrated probability of finding an ~ FIG. 3. Same as in the previous figure except that the scale is
avalanche of at least sizeas a function of the logarithm. Results ~ how log-double-log.

obtained by an ensemble average of }00 dlfferer.wt initial conditions At t=0, the stres§; is drawn from a linear distribution
for the same set of parameter as in Fig. 1. Inset: Same plot for the

time evolution of Fig. X(single realizatioh in the m_tervaI[O,l) such th_at two sites never have the same
stress simultaneously. This ensures that an event is always

stick-slip motion of blocks covered with sandpaper and S"d_triggered from a Si_”g"? .Site'. The mode_of propagatio_n of the
ing on carpef], itself a simplistic representation of single- avalanche from this initial site is not uniquely determined by

fault motion. At each site of a square lattice, a stress functiof® Ul 'erlf and m_lﬁ]t be chosen frorrr physéccnllnumﬁrl— _
is definedrF;(t), which evolves linearly in time, under a slid- cal) considerations. The most commonly used algorithm is a

ing force radial move from the center. This approach was retained by
' Olami et al. [2], Grassbergef12], Herz and Hopfield 6],

dF;(t) and others. The slowness of the algorithms used in the first

T 1. (1) studies of these models was such that only very small lattices

with sides betweeh =30 and 50 could be simulated, mak-
ing it difficult to identify size effects. With the introduction
of better algorithms, however, Grassber{fe2] could study
square lattices with sides of length uplte- 1000, and con-
F.(t)—F/(t)=0 ) firm and extend the results presented2h This technique,

: ’ which | have used here, improves the traditional approach

and a fraction of the stresd,;<1/4, is redistributed to the for the problem by(1) keeping the stres; time indepen-

When the stress at a siteeaches a thresholg, , taken to be
1 for simplicity, it is set to O,

nearest neighbor Gf[6], dent, letting instead the_ . threshold _ ch.ange with
dr(t)/dt=—1, and (2) subdividing the lattice into many
Fi(h—F[()=F;()+A,. (3)  blocks, therefore increasing the speed of state reordering af-

ter an avalanche. The reader is referred 18] for more

The last two steps are repeated until the stress at every site@étails.
below the thresholdr,. One can view this process as de- Figure 1 presents the temporal evolution of a typical re-
scribing the blocks slipping and releasing their stress on theilization for this model on a lattice of size Z2%ith
neighbors. Once alf;’s are within the allowed band of val- «=0.20, open boundaries, and no quenched disorder. Only
ues, time is restarted. The size of an event, called avalanctents involving more than 1000 sites are plotted there. In
by analogy with the sandpile models, is given by the numbethe left panel, we plot a short time sequence of recurring
of sites triggered at a single time. avalanches. In the right panel, we show the long time behav-

In previous works regarding this model, the redistributionior of this periodic sequence. Most of these events come
factor A; was taken to be site independent. Here, a smalPack in exactly the same way time after time, producing
amount of quenched disorder is introduced as a zero-medateausin the time evolution. Some, however, fluctuate

perturbation on a constant slightly but still remain very stable over long time sequences.
The unit of time chosen is the natural return period for
Ai=a+ B, (4) earthquake-type models with periodic boundary conditions,

T=1-4a, as was shown by Middleton and Tahtg] for
with B;, a random variable taken in the interat §,6].  the OFC coupled map and by Hf8] for a larger class of
Small §'s (<0.020) were generally used although larger val-models, including FF. With open boundaries, the period of
ues are also briefly discussed. A similar disorder was impleevents settles aP=1—-3«; i.e., it is controlled by the
mented on the OFC rule where it was found to affect signifi-boundary sites. As we shall see, this periodicity does not
cantly the dynamical behavi¢8]. survive the introduction of quenched disorder. From Fig. 1, it
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FIG. 4. Logarithm of the integrated size-probability distribution  F|G. 5. Same as Fig. 4 except that the scale is now log-double—
function as a function of the logarithm of the size tor=225 lat-  |og.

tices with «=0.10 and §=0.001 (solid ling), §=0.005 (short
dashe 6=0.20 (long dashefs anda=0.20 with 5=0.002(dots  smal| spatial perturbations; in order to be considered as a
as well as for a =484 lattice witha=0.20 with 6=0.002(dot  yeasonable substitution for a macroscopic system like neu-
dashes Inset: time e_volunon of the event for_La= 225 Iattlce_wnh rons or earthquakes, it is necessary that the model be stable
Ai_: 0.20+ O._OOOS.I\_I is tr_le total number of sites on the lattice and |, n4ar |ocal variations.
T is the period defined in the text. As was shown in previous works,8,9,11,15, the behav-
ior of these models can be strongly affected by even very

can also be noted that in the absence of quenched disordamall amounts of disorder. With the introduction of slight
only very small noise remains present in the time seriesfrozen disorder in the rule, all temporal behavior indeed be-
Although the system stays periodic for long stretches ofttomes stochastic and self-averaging. The plateaus that are
time, some instabilities can build up and change the configuseen in the standard FF model become unstable and do not
ration of eventg6] but their time scale is too long to be survive. However, and contrary to what could have been ex-
studied numerically. pected, with very small disorder thategrated probability

Because of the quasifrozen temporal behavior of this nonelistribution takes a well-defined shape that is in agreement
disordered IAF model, self-averaging does not take place. Iwith the one displayed by a single realization without any
order to characterize the distribution, HH and FF took anfrozen disorder. It can be fitted by an unusual law favoring
ensemble average over the results of many realizations withery large avalanches:
initial conditions. Such an average produces an integrated
size distribution of events that follows a power lésee Fig.
2). (This power-law behavior should not be seen as self- P(n)~ (logyon)”” ®)
organized critical since it comes from the average of differ-
ent systems, not self-averaging.his average distribution, As for the OFC casf8], disorder seems to help larger events
however, does not tell us much about the fundamental dyto take place. There is no full synchronization here, but the
namics of asinglerealization. decay in the distribution is slower than a typical power law.

If we look at such a quantityinset of Fig. 2, it appears Moreover, the nature of the distribution is not changed by the
clear that this distribution doasot follow a power law and small disorder but rather made more prominent. As one in-
that the weight is shifted towards larger avalanches. It turnsreases the amplitude of the frozen disorder, &j.is no
out that this distribution is well approximated by a straightlonger followed by the system.
line in a log—double-log plofFig. 3. It is clear from this The inset in Fig. 4 shows the time evolution for a
figure that the ensemble averaged distribution does not prd-=225 lattice witha=0.100 ands=0.005, i.e., with a very
vide a proper understanding as to the real nature of the evelaw degree of disorder. The generic time behavior is quali-
distribution for a single realization. tatively different from what is seen in Fig. (1) there are no

To understand the statistics of event-size distribution for sstable plateaus anymore and the system appears stochastic.
given realization, it is useful to introduce some quenched?2) Large avalanches, almost system wide in size, become
disorder that should break the symmetries of the FF interacrow very common. This type of time evolution happens for
tions, destabilize the plateaus, and produce a stochasticill the length scales studied here, i.e., betwkenl00 and
similar to what is found in the OFC modgl4]. The justifi- 484 and for a disorder amplitude smaller than about
cation for the addition of disorder is twofold: First, by intro- §=0.01. The smaller thé, however, the longer it takes for
ducing disorder in the problem, it should no longer be necthe correlation between successive events to decay. It is
essary to perform an ensemble average, allowing us to studherefore necessary to perform longer and longer runs in or-
the statistics of a single fault at a time. Second, it is a test ofler to obtain meaningful statistics. This is in agreement with
the stability of the results obtained for the FF rule underthe fact that for zero disorder, the correlation time becomes
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extremely long, although it is not clear whether it diverges.fact that in a similar mod€l12], the SOC exponent depends
Since there appears to be no transition between systems wigiensitively on the exact value of. Although | have shown
small disorder and the perfect FF model, the insight gainedesults here fot =225 and 484, similar results are found for
with the formers should extend straightforwardly to the latterlattices ofL=100. In this case, however, the system is not
even though its symmetry makes this underlying collectivdarge enough to produce the system-wide avalanches seen in
nature more difficult to observe in the nondisordered limit. the inset of Fig. 4. o _ .

As mentioned in the previous paragraph, there is no need The power-law behavior in the logarithm of event size
for an ensemble average in the presence of quenched disdiersists until some relatively large threshold in the amplitude
der. This disorder prevents the configuration from getting® the quenched disorder. For &=484 lattice with

stuck in a single and periodic series of event, destroying th& = 0-20, for example, the threshold is at abat 0.0025.
dependence on initial configuration that is seen in the Freyond th|s _valu_e, the bias toward_s large events d|sappears
model. The integrated probability distribution in Fig. 4 is and the distribution of avalanches is no longer well defined.

shown forL =225 lattices, with different’s and &'s. We There remains some tendency to organization, with some

see smooth curves with no plateaus or jumps. The sharp turlﬁrgg at\éz_alagcrr:es_ butAone does nlot fllndha simple Iav;/hto de-
at largen is a size effect and happens at about 95% of theCMoe this benavior. AS a general rule, however, as the am-

total size of the system. By contrast, the largest events founBIItUde of the disorder increases, system-size avalanches be-
come less frequent: the large degree of disorder prevents a

in the 6=0 systems remain usually small, often encompass- tem-wid nchronization by inhibitin N efficient
ing 30% or less of all sites, with the precise value dependin ystem-wide - synchronizatio y g an eflicie
ropagation of the avalanche through the network.

on the particular initial configuration. It is clear, from the In conclusion, | have shown that the introduction of fro-

lt;)ﬂ;:)ongc;%rgfbeemdaé?c?ibt:c? tatshg g::ﬁglr : tsgwgff g%sjlgghgﬁgrzen disorder in the modified Feder and Feder IAF model can

signature of SOC. The positive curvature of the distributionIead to better understanding of what is really happening in

means that larger events are more favored over smaller on&e zero-disorder limit. In this limit, the lattice sticks into a
than SOC would predict. As can be seen in Fig. 5, a |0g_quasistatic regime, which, with an ensemble average on dif-

double—log plot, the distribution is much better fitted by aferent initial conditions, displays a power-law distribution of
function like Eq &5) i.e., a power law of the logarithm of the avalanches. Introducing a small amount of frozen site disor-

event size logyn. In this representation, the distribution is a ](‘juer:(,jellrrs1Z?I\tl\r:lIt?r?:ethl’lgtéj(;St(;IithjrtiIgLTtiIosn rﬂflgsg:ﬂg %n?h?a;nggﬁ
straight line over a full unit, and is not an artifact of the 9

limited size of the system. Given the computational costs oﬂfﬁ&dgé Iérggc'risbgzjotr)e gﬁﬁiﬂ;ﬁgarg\?véﬂg\i ﬁ}l?rllaenlgh?;itﬁrrf
simulation, extending significantly the regime would be PTO"of the size. This resu)I/t breaks dow% when disorder in?:reases
hibitive. Interestingly, the exponent appears to be rela- ’

tively unaffected by the specific value afand &, as distri- further.

butions obtained from various parameters all fall on top of | would like to thank G. T. Barkema and A. V. M. Herz
each other. This effect could already be seen in the previou®r interesting discussions and the latter also for sending me
figure. The value of this exponent is=2.6. Its universality a copy of his computer program implementing the Grass-
is not well understood at the moment especially given theberger algorithm.
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